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Among the four methods of the unit-subduced-cycle-index (USCI) approach, the subduced-
cycle-index (SCI) method and the partial-cycle-index (PCI) method have been discussed by
using adamantane ofTd -symmetry as a probe for enumeration problems, where USCIs are
derived on the basis of permutaion representations, coset representations (CRs) and marks.
After the examination of the SCIs and PCIs, Pólya’s theorem that is a standard method of
chemical combinatorics has been derived from the USCI approach. As another approach, a
new method called the characteristic-monomial (CM) method has been developed by virtue
of charactereistic monomials (CMs). The CMs have been derived fromQ-conjugacy repre-
sentations andQ-conjugacy characters, which have been related to irreducible representations
and irreducible characters of the standard repertoire of chemical group theory. The two ap-
proaches have been compared to discuss group-theoretical tools for chemical combinatorics
on a common basis.
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1. Introduction

Two disciplines of chemical group theory. Chemical combinatorics is one of the major
chemical fields that heavily depend on group-theoretical tools, where its descrete na-
ture has been treeted with permutation groups. Pólya’s theorem [1–5] has widely used
in chemical combinatorics, the results of which have been summarized in excellent re-
views [6–8] and books [9–11]. Redfield’s method [12–14] and related tools [15–17] have
been reported, but less familiar to chemists as well as to mathematicians than Pólya’s
theorem. Later, a method based on double cosets has been reported [18,19]. The three
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types of methods have been applied to the enumeration of rigid isomers [20–22] as well
as to that of non-rigid isomers [23,24]. But, it should be emphasized here that isomers
counted by these methods are itemized with respect to molecular formulas only. In other
words, their results are not concerned with the symmetries of isomers.

Combinatorial enumeration concerning both molecular formulas and symmetries
has later been investigated by many authors [25–30]. In order to take account of isomer
symmetries, mark tables introduced by Burnside [31] or framework groups introduced
by Pople [32] has been combined with permutation groups.

We have pointed out the importance of coset representations (CRs) in order to
systematize combinatorial enumeration [33] as well as to comprehend stereochemical
phenomena [34]. In particular, we have proposed a new concept, “the subduction of
coset representations (CRs)”, which is a key to link stereochemistry with chemical com-
binatorics [33–35]. From the data of the subduction of CRs, we have introduced unit
subduced cycle indices (USCIs). Thereby, we have developed four methods for com-
binatorial enumeration concerning both molecular formulas and symmetries, i.e., the
subduced-cycle-index (SCI) method [33], the partial-cycle index (PCI) method [36], the
elementary-superposition method [37], and the partial-superposition method [37]. They
are collectively called “the USCI approach”, since they start from unit subduced cycle
indices (USCIs) obtained by the subduction of CRs.

By virtue of the formulation of the USCI approach, all of the methods described
above are clarified to be based on permutation groups or permutation representations.
More precisely speaking, they are based on permutation representations, coset represen-
tations (CRs) as transitive permutation representations, and marks as invariants. Pólya’s
theorem, which was originally formulated on the basis of permutation groups, has been
alternatively derived from the USCI approach [38]. In addition, the Pólya’s theorem has
been shown to stem from dominant representations and dominant markaracters (mark-
character) that have been defined as the CRs and the marks for cyclic subgroups [39,40].

In contrast, other chemical fields that treat problems of continuous nature have em-
ployed another type of group-theoretical tools: linear representations, irreducible rep-
resentations and characters for point groups. These tools have been widely and suc-
cessfully used in quantum chemistry [41], molecular spectroscopy [42], and related
fields [43], where they meet the continuous nature of the problems. Many textbooks
have been published to describe the details of them [44–50].

As clarified by the discussion in the preceding paragaraphs, chemical group theory
has been developed on the basis of different disciplines: one discipline due to permuta-
tion representations and the related concepts vs. the other discipline due to linear rep-
resentations and the related concepts. Although these two disciplines have found their
own applications in the respective fields in chemistry and in mathematics, the common
basis between them should be developed to obtain a further insight into chemical group
theory.

Integration of the two disciplines. The crux for integrating the two desciplines is the
parallelism between a set of permutation representations, dominant representations, and
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dominant markaracters and another set of linear representations, irreducible representa-
tions and characters. If we develop a system of combinatorial enumeration by starting
from the latter set, we can find a clue for integrating the two desciplines.

According to this guideline, we have recently developed the characteristic-
monomial (CM) method for combinatorial enumeration by starting from another type of
representations, i.e.,Q-conjugacy representations [51–53]. TheQ-conjugacy represen-
tations have been shown to mediate between dominant representations and irreducible
representations; as well as between dominant markaracters and irreducible characters.
In other word, they have been found to be a clue for integrating the two desciplines.

The short history described in the preceding paragraphs shows that it is not so an
easy task to grasp the point of the integration, because the relationships between the
items discussed in the respective papers are entangled with each other. Hence, the goal
of the present paper is to give a comprehensive perspective on the two desciplines of
chemical group theory and to grasp the point of their integration. To arrive at this goal,
the USCI methods based on the one descipline and the CM method based on the other
descipline will be compared by using a common enumeration problem as a probe for
testing such integration.

2. Orbits and coset representations

Let us consider the ten carbons of an adamantane skeleton (figure 1). Generally
speaking, any set of equivalent objects is called an orbit, which is an equivalence class
from the mathematical point of view. Thus, the six bridge carbons shown by solid circles
are equivalent to each other and construct a six-membered orbit. On the other hand, the
four bridgehead carbons construct another orbit, as shown by open circles. Now, our
problem is how to characterize these orbits.

To do this task, we take account of the global symmetry of the adamantane skeleton
and the local symmetry of each carbon [35,54]. For example, any one of the bridge
carbons has the local symmetry ofC2v. Hence, we combine the local symmetry with the

Ten carbons of Adamantane Six bridgeheads Four bridges

Global Symmetry Td Td
Local Symmetry C2v C3v

Coset Representation Td(/C2v) Td(/C3v)

Orbit Size |Td |/|C2v| = 24/4= 6 |Td |/|C3v| = 24/6= 4
USCI s6 s4

Figure 1. Orbits for adamantane.
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Table 1
Mark table ofTd .

C1 C2 Cs C3 S4 D2 C2v C3v D2d T Td

Td (/C1) 24 0 0 0 0 0 0 0 0 0 0
Td (/C2) 12 4 0 0 0 0 0 0 0 0 0
Td (/Cs ) 12 0 2 0 0 0 0 0 0 0 0
Td (/C3) 8 0 0 2 0 0 0 0 0 0 0
Td (/S4) 6 2 0 0 2 0 0 0 0 0 0
Td (/D2) 6 6 0 0 0 6 0 0 0 0 0
Td (/C2v) 6 2 2 0 0 0 2 0 0 0 0

Td (/C3v) 4 0 2 1 0 0 0 1 0 0 0

Td (/D2d ) 3 3 1 0 1 3 1 0 1 0 0
Td (/T) 2 2 0 2 0 2 0 0 0 2 0
Td (/Td ) 1 1 1 1 1 1 1 1 1 1 1

global symmetry ofTd so as to coin a new symbolTd(/C2v), as shown in the row of CR.
To characterize the orbit of bridgeheads, we use a new symbolTd(/C3v) in accord with
the local symmetry ofC3v.

This procedure, however, has a qualitative meaning only. The next problem is
how to add a quantitative meaning to these symbols,Td(/C2v) andTd(/C3v). For this
purpose, we should note that the transformation of the members of an orbit is ascribed
to that of the corresponding cosets. Hence, we can ascribe the symbolTd(/C2v) to a
permutation representation of degree 6, though we do not show the concrete form of
the permutation representation. Similarly, we can ascribe the symbolTd(/C3v) to a
permutation representation of degree 4. The degrees of such CRs can be calculated by
dividing the order of global symmetry with the order of the local symmetry, as shown in
the “orbit size” row of figure 1 [35].

Mathematically speaking, the assignment of a coset representation to an orbit is
conducted by counting fixed points during the desymmetrization to the local symmetry.
We take account of a nonredundant set of subgroups (SSG) in order to avoid duplicated
consideration:

SSG= {C1,C2,Cs ,C3,S4,D2,C2v,C3v,D2d,T,Td}. (1)

Thus, we can obtain a fixed point vector (FPV) by arranging such numbers of fixed
points in the order of the SSG. The FPV obtained in this procedure is compared with the
rows of a mark table (table 1), so that the identical row indicates the corresponding CR:

6• �⇒ FPV= (6,2,2,0,0,0,2,0,0,0, 0) Mark table============⇒
(table 1)

Td(/C2v),

4◦ �⇒ FPV= (4,0,2,1,0,0,0,1,0,0, 0) Mark table============⇒
(table 1)

Td(/C3v).
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Table 2
The inverse of the mark table ofTd .

Td Td Td Td Td Td Td Td Td Td Td
(/C1) (/C2) (/Cs ) (/C3) (/S4) (/D2) (/C2v) (/C3v) (/D2d) (/T) (/Td ) Sum

C1
1
24 0 0 0 0 0 0 0 0 0 0 1

24
C2 −1

8
1
4 0 0 0 0 0 0 0 0 0 1

8
Cs −1

4 0 1
2 0 0 0 0 0 0 0 0 1

4
C3 −1

6 0 0 1
2 0 0 0 0 0 0 0 1

3
S4 0 −1

4 0 0 1
2 0 0 0 0 0 0 1

4
D2

1
12 −1

4 0 0 0 1
6 0 0 0 0 0 0

C2v
1
4 −1

4 −1
2 0 0 0 1

2 0 0 0 0 0

C3v
1
2 0 −1 −1

2 0 0 0 1 0 0 0 0

D2d 0 1
2 0 0 −1

2 −1
2 −1

2 0 1 0 0 0

T 1
6 0 0 −1

2 0 −1
6 0 0 0 1

2 0 0

Td −1
2 0 1 1

2 0 1
2 0 −1 −1 −1

2 1 0

Table 1 shows the mark table ofTd , which has been computationally calcu-
lated [35]. The FPVs obtained in the above procedure are found in the rows of the
corresponding CRs, which are undelined for emphasis.

A mark table (M) such as table 1 is regarded as a square matrix. The inverse (M−1)
of the mark table is more useful to do the task of assignment. Table 2 shows the inverse
mark table ofTd , which has been computationally calculated [35].

The FPVs obtained in the above procedure are multiplied by the inverse mark table
(M−1) to give the multiplicity of each CR:

Td(/C2v): (6,2,2,0,0,0,2,0,0,0,0)M−1 = (0,0,0,0,0,0,
C2v
1 , 0, 0,0,0),

Td(/C3v): (4,0,2,1,0,0,0,1,0,0,0)M−1 = (0,0,0,0,0,0, 0,
C3v
1 ,0,0,0).

It should be noted that we can assure the appearance ofTd(/C2v) andTd(/C3v) from
the data of the total FPV for the ten carbons of the adamantane skeleton:

Total: (10,2,4,1,0,0,2,1,0, 0,0)M−1 = (0,0,0,0,0,0,
C2v
1 ,

C3v
1 ,0,0,0).

Each sum collected in the right most column of table 2 is the summation of each
row. It should be noted here that the summation for a cyclic subgroup is a positive
rational number, while the one for a non-cyclic subgroup vanishes to zero. This has
been proved in general [35].

3. Subduction of coset representations and unit subduced cycle indices (USCI)

Let us now cosider the process of converting the adamantane skeleton into a di-
azaadamantane skeleton, which belongs to the symmetryD2d (figure 2). This desym-
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C8N2 Four bridgeheads NN Four bridges

Global Symmetry D2d D2d D2d

Local Symmetry C′2 C2v Cs
Coset Representation D2d(/C′2) D2d(/C2v) D2d(/C3v)

Orbit Size |D2d|/|C′2| |D2d|/|C2v| |D2d|/|Cs|
= 8/2= 4 = 8/4= 2 = 8/2= 4

USCI s2s4 s4

Figure 2. Orbits for diazaadamantane.

D2d



I ∼ (1)(2)(3)(4) (5)(6)
C2(1)∼ (12)(34) (5)(6)
C2(2)∼ (12)(3)(4) (56)
C2(3)∼ (1)(2)(34) (56)
σd(2) ∼ (13)(24) (5)(6)
σd(4) ∼ (14)(23) (5)(6)
S4(1) ∼ (1324) (56)
S3

4(1) ∼ (1423) (56)︸ ︷︷ ︸
D2d(/C′2)

︸ ︷︷ ︸
D2d(/C2v)

Figure 3. Subduction of coset representations. Example of concrete permutations.

metization causes the division of the six-membered orbit of bridge carbons to produce a
four-membered orbit of carbons and a two-membered orbit of nitrogens. In contrast, the
four-membered orbit of bridgehead carbons does not divided during the desymmetriza-
tion. By considering the global symmetry and local symmetries, we can assign a CR to
each of these orbits divided.

These desymmetrization processes are ascribed to the division of an original rep-
resentation for a group into several permutation representations for a subgroup. For
example, figure 3 shows the behavior of the CRTd(/C2v) during the desymmetrization
from the groupTd to the subgroupD2d, where the six-membered orbit of bridge carbons
are divided into two parts. Thus, we select the eight permutations corresponding to the
subgroupD2d (figure 3) from the CR of the six-memberedTd(/C2v)-orbit. The resulting
set of the permutations is a permutation representation of theD2d .

The inspection of the permutations collected in figure 3 provides us with the divi-
sion into a set of permutations of degree 4 and another set of permutations of degree 2.
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Hence, the division is formally expressed by the following equation:

Td(/C2v) ↓ D2d =D2d(/C′2)+ D2d(/C2v),

|D2d |
|C′2| = 4, |D2d ||C2v| = 2.

USCI ︸ ︷︷ ︸
s2s4

The size of each resulting orbit is calculated by starting from the orders of the partici-
pating groups. Thereby, we obtain a unit subduced cycle index (USCI) ofs2s4, which
corresponds to the sizes of the resulting orbits. The pictorial treatment illustrated by
figures 2 and 3 can be assurred algebraically by using the mark table and its inverse for
theD2d-group, as formally expressed by the equations of subductions:

Td(/C2v) ↓ D2d = D2d(/C′2)+ D2d(/C2v), (2)

Td(/C3v) ↓ D2d = D2d(/Cs). (3)

Table 3
Subduction table ofTd (left half).

↓C1 ↓C2 ↓Cs ↓C3 ↓S4 ↓D2

Td(/C1) 24C1(/C1) 12C2(/C1) 12Cs (/C1) 8C3(/C1) 6S4(/C1) 6D2(/C1)
Td(/C2) 12C1(/C1) 4C2(/C1) 6Cs (/C1) 4C3(/C1) 2S4(/C1) 2D2(/C2)

+4C2(/C2) +2S4(/C2) +2D2(/C′2)
+2D2(/C′′2)

Td(/Cs ) 12C1(/C1) 6C2(/C1) 5Cs (/C1) 4C3(/C1) 3S4(/C1) 3D2(/C1)
+2Cs (/Cs )

Td(/C3) 8C1(/C1) 4C2(/C1) 4Cs (/C1) 2C3(/C1) 2S4(/C1) 2D2(/C1)
+2C3(/C3)

Td(/S4) 6C1(/C1) 2C2(/C1) 3Cs (/C1) 2C3(/C1) S4(/C1) D2(/C2)
+2C2(/C2) +2S4(/S4) +D2(/C′2)

+D2(/C′′2)
Td(/D2) 6C1(/C1) 6C2(/C2) 3Cs (/C1) 2C3(/C1) 3S4(/C2) 6D2(/D2)

+2C2(/C2) +2S4(/S4) +D2(/C′2)
Td(/C2v) 6C1(/C1) 2C2(/C1) 2Cs (/C1) 2C3(/C1) S4(/C1) D2(/C2)

+2C2(/C2) +2Cs (/Cs ) +S4(/C2) +D2(/C′2)
+D2(/C′′2)

Td(/C3v) 4C1(/C1) 2C2(/C1) Cs (/C1) C3(/C1) S4(/C1) D2(/C1)
+2Cs (/Cs ) +C3(/C3)

Td(/D2d ) 3C1(/C1) 3C2(/C2) Cs (/C1) C3(/C1) S4(/C2) 3D2(/C2)
+Cs (/Cs) +S4(/S4)

Td(/T) 2C1(/C1) 2C2(/C2) Cs (/C1) 2C3(/C3) S4(/C2) 2D2(/C2)
Td(/Td ) C1(/C1) C2(/C2) Cs (/Cs) C3(/C3) S4(/S4) D2(/D2)
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Table 4
Subduction table ofTd (right half).

↓C2v ↓C3v ↓D2d ↓T ↓Td

Td(/C1) 6C2v(/C1) 4C3v(/C1) 3D2d(/C1) 2T(/C1) Td(/C1)
Td(/C2) 2C2v(/C1) 2C3v(/C1) D2d(/C2) 2T(/C2) Td(/C2)

+2C2v(/C2) +2D2d(/C′2)

Td(/Cs ) 2C2v(/C1) C3v(/C1) D2d(/C1) T(/C1) Td (/Cs)
+C2v(/Cs) +2C3v(/Cs) +2D2d(/Cs )
+C2v(/C′s)

Td(/C3) 2C2v(/C1) C3v(/C1) D2d(/C1) 2T(/C3) Td(/C3)
+C3v(/C3)

Td(/S4) C2v(/C1) C3v(/C1) D2d(/C′2) T(/C2) Td(/S4)
+C2v(/Cs) +2D2d(/S4)

Td(/D2) 3C2v(/Cs) C3v(/C1) 3D2d(/D2) 2T(/D2) Td(/D2)
+C2v(/Cs) +2D2d(/S4)

Td(/C2v) C2v(/C1) 2C3v(/Cs) D2d(/C′2) T(/C2) Td(/C2v)
+2C2v(/C2v) +2D2d(/C2v)

Td(/C3v) C2v(/Cs ) C3v(/Cs ) D2d(/Cs) T(/C3) Td(/C3v)
+C2v(/C′s) +C3v(/C3v)

Td(/D2d ) C2v(/C2) C3v(/Cs ) D2d(/D2) T(/D2) Td(/D2d )
+C2v(/C2v) +D2d(/D2d )

Td(/T) C2v(/C2) C3v(/C3) D2d(/D2) 2T(/T) Td(/T)
Td(/Td ) C2v(/C2v) C3v(/C3v) D2d(/D2d) T(/T) Td (/Td )

In general, such a subduction of a given CR into each subgroup can be computationally
calculated by starting from mark tables and inverse mark tables. The results are summa-
rized as a subduction table, as shown in tables 3 and 4, although the concrete procedure
is abbreviated [35].

From the data of the subduction table (tables 3 and 4), we can obtain the corre-
sponding USCI table (table 5).

4. The USCI approach

4.1. Four methods of the USCI approach

On the basis of the USCIs, we have developed four methods. They are collectively
called “the USCI approach”, since they start from unit subduced cycle indices (USCIs)
obtained by the subduction of CRs.

(1) The SCI method [33] is a generating-function method based on subduced cy-
cle indices (SCIs) and mark tables, the former of which are derived from the
subduction of CRs.
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Table 5
USCI table ofTd .

↓C1 ↓C2 ↓Cs ↓C3 ↓S4 ↓D2 ↓C2v ↓C3v ↓D2d ↓T ↓Td

Td(/C1) s24
1 s12

2 s12
2 s83 s64 s64 s64 s46 s36 s212 s24

Td(/C2) s12
1 s41s

4
2 s62 s43 s22s

2
4 s62 s22s

2
4 s26 s34 s26 s12

Td(/Cs ) s12
1 s62 s21s

5
2 s43 s34 s34 s22s

2
4 s23s6 s4s8 s12 s12

Td(/C3) s81 s42 s42 s21s
2
3 s24 s24 s24 s2s6 s8 s24 s8

Td(/S4) s61 s21s
2
2 s32 s23 s21s4 s32 s2s4 s6 s2s4 s6 s6

Td(/D2) s61 s61 s32 s23 s32 s61 s32 s6 s32 s23 s6

Td(/C2v) s61 s21s
2
2 s21s

2
2 s23 s2s4 s32 s21s4 s23 s2s4 s6 s6

Td(/C3v) s41 s22 s21s2 s1s3 s4 s4 s22 s1s3 s4 s4 s4

Td(/D2d ) s31 s31 s1s2 s3 s1s2 s31 s1s2 s3 s1s2 s3 s3

Td(/T) s21 s21 s2 s21 s2 s21 s2 s2 s2 s21 s2

Td(/Td ) s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1

Sum 1/24 1/8 1/4 1/3 1/4 0 0 0 0 0 0

(2) The PCI method [36] is also a generating-function method using partial cycle
indices (PCIs), which are also derived from the subduction of CRs.

(3) The elementary-superposition method [37] is based on the concept of the el-
emental superposition, which has been proposed to discuss desymmetrization
processes and has been applied to SCIs.

(4) The partial-superposition method [37] is also based on the elemental superpo-
sition, which is applied to PCIs.

Among the four methods, we here mention the SCI method and the PCI method.
An SCI represened by the symbol ZI(Gj ; s(α)djk ) is calculated for a subgroupGj

from the data of USCIs, which are multiplied in accord with participating orbits:

ZI(Gj ; s(α)djk ) =
s∏
i=1

αi∏
α=0

ν∏
k=1

(
s
(α)
djk

)β(ij)k . (4)

Although the meanings of the symbols are not explained for the sake of simplicity, the
use of equation (4) is straightforward because each USCI represened by the inner product

(
∏ν
k=1(s

(α)
djk
)β
(ij)
k ) is collected in theGj -column of a USCI table (e.g., table 5). Note

that the participant orbits (G(/Gi)) are distinguished by the superscript(α) so that they
are ascribed to respective ligand inventories described below. Each of the monomials
(equation (4)) produces a generating function for calculating intermediate numbers (ρθj )
of isomers with various formulasWθ and the fixed symmetryGj :∑

θ

ρθjWθ = ZI
(
Gj ; s(α)djk

)
, (5)
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where we use ligand-inventories:

s
(α)
djk
=
∑
r

wiα(Xr)
djk . (6)

The intermediate numbers (ρθj ) construct theGj -column of an intermediate matrix
(equation (7)). The resulting matrix is multiplied by the inverse mark table (M−1), pro-
viding the numbers (Aθj ) of isomers with a given formula and a given symmetry, as
shown in the matrix of the right-hand side of equation (7).

ρ11 ρ12 . . . ρ1s

ρ21 ρ22 . . . ρ2s
...

...
. . .

...

ρ|θ |1 ρ|θ |2 . . . ρ|θ |s

M−1 =


A11 A12 . . . A1s

A21 A22 . . . A2s
...

...
. . .

...

A|θ |1 A|θ |2 . . . A|θ |s

 . (7)

The data of SCIs are aligned in the order of SSG to give a row vector of SCIs. The
row vector of SCIs is multiplied by the column vector of the inverse mark table (M−1)
to give a PCI for a subgroupGi:

PCI
(
Gi; s(α)djk

) = s∑
j=1

mjiZI
(
Gj ; s(α)djk

)
, (8)

where the SCI ZI(Gj ; s(α)djk ) is given by equation (4) and the symbolmji represents the

j th element in theith column of the inverse mark table (M−1).
The PCI for a fixed subgroupGi (equation (8)) is a polynomial, which gives a gen-

erating function for calculating the numbersAθj of isomers with various formulas (Wθ )
and the fixed symmetryGi: ∑

θ

AθiWθ = PCI
(
Gi; s(α)djk

)
, (9)

where we use ligand-inventories represented by equation (6).

4.2. Isomer enumeration by the SCI method

Let us now enumerate adamantane isomers, where the bridges and bridgeheads of
an adamantane skeleton are replaced by carbons, nitrogens and oxygens (figure 4). To
do this enumeration, we shoud take account of the obligatory minimum valency (OMV)
of each position [35]. That is to say, each bridge position is able to accomodate carbons,
nitrogens and oxygens, while each bridgehead cannot take oxygen atoms. We can treat
the OMV by using two kinds of ligand inventories.

Since the bridges and the bridgeheads belong toTd(/C2v) andTd(/C3v), respec-
tively, we obtain the SCIs from the data of the USCI table. For example, the SCI for
C3v is calculated to be(s23)

(1) × (s1s3)(2), where the superscripts (1) and (2) represent
theTd(/C2v)-orbit andTd(/C3v)-orbit, respectively. Then, the ligand inventories shown
in figure 4 are introduced into the resulting SCIs. The resulting equations are expanded
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•Orbits and OMV (Obligatory minimum valency)
Bridges Td(/C2v): C, N, O �⇒ Ligand Inventory:

sd = xd + yd + zd
Bridgeheads Td(/C3v): C, N (no O) �⇒ Ligand Inventory:

sd = xd + yd
•SCIs for Every Subgroups

C1 C2 Cs C3 S4 D2 C2v C3v D2d T Td
Td (/C2v) s61 s21s

2
2 s21s

2
2 s23 s2s4 s32 s21s4 s23 s2s4 s6 s6

× × × × × × × × × × ×
Td (/C3v) s41 s22 s21s2 s1s3 s4 s4 s22 s1s3 s4 s4 s4

Figure 4. Isomer enumeration by the SCI method.

to give generating functions forρ-values. As an example, the expansion process for the
subgroupC3v is shown as follows:

(
x3 + y3 + z3)2(x + y)(x3 + y3)
= x10+ x9y + 3x7y3 + 3x6y4 + 3x4y6 + 3x3y7 + xy9 + y10

+ 2x7z3+ x4z6+ 2y7z3+ y4z6

+ 2x6yz3+ x3yz6+ 2xy6z3+ xy3z6. (10)

The coefficients appearing in each of the expanded generating functions are col-
lected to construct the corresponding column of an intermediate matrix in accord with
equation (7), as shown in the first matrix of figure 5. For example, the coefficients in the
right-hand side of equation (10) are listed in theC3v-row of the first matrix of figure 5.
Then, the resulting matrix is multiplied by the inverse mark table (M−1) for Td to give a
matrix collecting isomer numbers, as shown in the second matrix of figure 5.

To illustrate the results of enumeration, we depict isomers ofx8y2 andx8z2, which
corespond to diaza- and dioxa-adamantanes (figure 6). As for diaza-adamantane iso-
mers, there are threeCs-isomers, oneC2v-isomer, and oneD2d-isomer. On the other
hand, there are oneCs-dioxa isomer and oneD2d-isomer. Our SCI method gives us
isomer numbers with itemized symmetries. It should be noted here that Pólya’s theo-
rem gives value 5 for diaza- isomers and value 2 for dioxa- isomers, where itemization
concerning symmetries is not taken into consideration.
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

(ρθj ) C1 C2 Cs C3 S4 D2 C2v C3v D2d T Td
x10 1 1 1 1 1 1 1 1 1 1 1
x9y 10 2 4 1 0 0 2 1 0 0 0
x9z 6 2 2 0 0 0 2 0 0 0 0
x8y2 45 5 9 0 1 3 3 0 1 0 0
x8z2 15 3 3 0 1 3 1 0 1 0 0
x8yz 54 2 6 0 0 0 2 0 0 0 0
x7y3 120 8 16 3 0 0 4 3 0 0 0
x7z3 20 4 4 2 0 0 0 2 0 0 0
x7y2z 216 8 12 0 0 0 4 0 0 0 0
x7yz2 120 4 10 0 0 0 0 0 0 0 0


M−1

=



(Aθj ) C1 C2 Cs C3 S4 D2 C2v C3v D2d T Td
x10 0 0 0 0 0 0 0 0 0 0 1
x9y 0 0 0 0 0 0 1 1 0 0 0
x9z 0 0 0 0 0 0 1 0 0 0 0
x8y2 0 0 3 0 0 0 1 0 1 0 0
x8z2 0 0 1 0 0 0 0 0 1 0 0
x8yz 1 0 2 0 0 0 1 0 0 0 0
x7y3 2 1 3 0 0 0 2 3 0 0 0
x7z3 0 1 0 0 0 0 0 2 0 0 0
x7y2z 6 1 4 0 0 0 2 0 0 0 0
x7yz2 2 1 5 0 0 0 0 0 0 0 0


Figure 5. Isomer enumeration by the SCI method.

4.3. Isomer enumeration by the PCI method

The PCI method gives equivalent results. For example, we have a PCI forC3v as
follows:

PCI= (s23)(1)(s1s3)(2) − (s6)(1)(s4)(2), (11)

where the superscripts (1) and (2) represent theTd(/C2v)- andTd(/C3v)-orbits. Note
that the coefficients of equation (11) are picked up from theTd(/C3v)-column of the
inverse of the mark table ofTd (table 2), where the elements at the intersections with
C3v- andTd-rows in the column are non-zero and the remaining values are equal to zero.
The ligand inventories shown in figure 4 are introduced into the PCI (equation (11)),
which is expanded to give the numbers ofC3v-isomers as the coefficients of a generating
functions: (

x3+ y3+ z3)2(x + y)(x3 + y3)− (x6+ y6 + z6)(x4 + y4)
= x9y + 3x7y3 + 2x6y4 + 2x4y6 + 3x3y7 + xy9

+ 2x7z3+ 2y7z3+ 2x6yz3+ x3yz6+ 2xy6z3+ xy3z6. (12)
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Figure 6. Diaza- and dioxa-adamantane isomers.

The values are in agreement with theC3v-column of the matrix obtained by the SCI
method shown in figure 5. The PCIs for the other subgroups and the corresponding
generating functions can be obtained similarly.

4.4. Pólya’s theorem derived from USCI approach

We have derived Pólya’s theorem by starting from the USCI approach, where we
have correlated USCIs with Pólya’s cycle indices [38]. Thereby, a new formulation of a
cycle index (CI) is represented by starting from SCIs as follows:

CI
(
G; s(α)djk

) = s∑
j=1

(
s∑
i=1

mji

)
ZI
(
Gj ; s(α)djk

)
, (13)

where the SCIs (ZI(Gj ; s(α)djk )) are represented by equation (4). By using the newly-
defined CI (equation (13)), a generating function for enumeration of isomers with for-
mulaWθ is obtained: ∑

θ

AθWθ = CI
(
G; s(α)djk

)
(14)

where we use ligand-inventories represented by equation (6). This equation means that
we have another formulation of Pólya’s theorem on the basis of our USCI approach. The
inner summation(

∑s
i=1mji) appearing in the definition of the CI (equation (13)) is the

sum described in the inverse mark table (table 2).
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Let us reexamine the enumeration of adamantane isomers by the CI method of
the USCI approach. Under the tabulation of the SCIs for every subgroups, the inner
summations are collected. Remember that each sum is a rational number for each cyclic
subgroup, but vanishes for each non-cyclic subgroup. From the data collected in figure 4,
we obtain the CI for this case:

CI= 1

24

(
s61
)(1)(

s41
)(2) + 1

8

(
s21s

2
2

)(1)(
s22
)(2) + 1

4

(
s21s

2
2

)(1)(
s21s2

)(2)
+ 1

3

(
s23
)(1)
(s1s3)

(2) + 1

4
(s2s4)

(1)(s4)
(2). (15)

After the ligand inventories shown in figure 4 are introduced, the resulting equation is
expanded to give a generating function:∑

θ

AθWθ = 1

24
(x + y + z)6(x + y)4

+ 1

8
(x + y + z)2(x2 + y2 + z2

)2(
x2 + y2

)2+ · · ·
= x10+ 2x9y + x9z+ 5x8y2 + 4x8yz + 2x8y2 + · · · . (16)

As found easily, the CI defined here contains terms for cyclic subgroups, but does not
contain terms for non-cyclic subgroups. Thereby, we reach an important conclusion:
Pólya’s theorem takes account of cyclic subgroups only! More precisely speaking,
Pólya’s theorem has been found to take account of conjugacy classes that are related
to cyclic subgroups.

5. Restriction to cyclic subgroups

5.1. Markaracter tables, dominant subduction tables and dominant USCI tables

The conclusion described in the last section implies that we can select rows and
columns for cyclic groups from the data of a mark table. For example, we select the
upperleft part of the mark table ofTd (table 1) to produce a markaracter table (table 6)
[39,40]. The term “markaracter” has been coined by us to discuss marks for permutation
representations and characters for linear representations in a common basis. A dominant
markaracter for a cyclic subgroup is here defined a row vector appearing in the resulting
markaracter table.

On the same line as described on markaracters, subduction tables such as tables 3
and 4 can be restricted to treat cyclic subgroups only. The resulting tables (e.g., table 7)
are called dominant subduction tables.

On the same line, USCI tables such as table 5 can be restricted to treat cyclic
subgroups only. The resulting tables (e.g., table 8) are called dominant USCI tables.
Obviously, the power of the variables1 in each dominant USCI (e.g., table 8) is equal to
the corresponding character collected in the markaracter table (e.g., table 6).
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Table 6
Markaracter table ofTd (M̃).

C1 C2 Cs C3 S4

Td(/C1) 24 0 0 0 0
Td(/C2) 12 4 0 0 0
Td(/Cs ) 12 0 2 0 0
Td(/C3) 8 0 0 2 0
Td(/S4) 6 2 0 0 2

Table 7
Dominant subduction table ofTd .

↓C1 ↓C2 ↓Cs ↓C3 ↓S4

Td(/C1) 24C1(/C1) 12C2(/C1) 12Cs (/C1) 8C3(/C1) 6S4(/C1)
Td(/C2) 12C1(/C1) 4C2(/C1) 6Cs(/C1) 4C3(/C1) 2S4(/C1)

+4C2(/C2) +2S4(/C2)

Td(/Cs) 12C1(/C1) 6C2(/C1) 5Cs(/C1) 4C3(/C1) 3S4(/C1)
+2Cs (/Cs)

Td(/C3) 8C1(/C1) 4C2(/C1) 4Cs(/C1) 2C3(/C1) 2S4(/C1)
+2C3(/C3)

Td (/S4) 6C1(/C1) 2C2(/C1) 3Cs(/C1) 2C3(/C1) S4(/C1)
+2C2(/C2) +2S4(/S4)

Table 8
Dominant USCI table ofTd .

↓C1 ↓C2 ↓Cs ↓C3 ↓S4

Td(/C1) s24
1 s12

2 s12
2 s83 s64

Td(/C2) s12
1 s41s

4
2 s62 s43 s22s

2
4

Td(/Cs ) s12
1 s62 s21s

5
2 s43 s34

Td(/C3) s81 s42 s42 s21s
2
3 s24

Td(/S4) s61 s21s
2
2 s32 s23 s21s4

Sum 1/24 1/8 1/4 1/3 1/4

5.2. Markaracters, subductions, and USCIs for non-cyclic subgroups

Let us examine now markaracters for CRs concerning non-cyclic subgroups [39].
For example, the markaracter ofTd(/C3v) is shown as follows:

Td(/C3v) =
(C1

4
C2
0

Cs
2

C3
1

S4
0

)
.
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This markaracter is calculated by a linear combination of dominant markaracters, which
are concerned with the cyclic subgroups:

−1
2Td(/C1) = −24× 1

2 0 0 0 0
+Td(/Cs) = 12 0 2 0 0
+1

2Td(/C3) = 8× 1
2 0 0 2× 1

2 0

Total 4 0 2 1 0

The coefficients appearing in this linear combination are rational numbers, i.e.,−1/2,
+1 and+1/2. Markaracters of the present paper are equivalent to rational characters of
the standard terminology and that this linear combination is equivalent to the calculation
due to Artin’s theorem on rational characters. It should be noted that the concept of
markaracters stems from the concept of marks that are defined on the basis of permuta-
tion representatins, while the concept of rational characters comes from the concept of
linear representations. The result is formally represented by using the symbols of CRs:

Td(/C3v) = −1

2
Td(/C1)+ Td(/Cs)+ 1

2
Td(/C3). (17)

The subduction of the both sides of this equation is conducted formally so that the sub-
duction concerning non-cyclic subgroups is represented by the subductions concerning
cyclic subgroups:

Td(/C3v) ↓ Gi = −1

2
Td(/C1) ↓ Gi + Td(/Cs) ↓ Gi + 1

2
Td(/C3) ↓ Gi . (18)

The formal subduction represented by equation (18) gives the subduction of non-
dominant CRs from the data for cyclic subgroups [40]. For example, we have the CR
Td(/C3v) subduced intoCs as follows:

Td(/C3v) ↓ Cs =−1

2
Td(/C1) ↓ Cs + Td

(
/Cs

) ↓ Cs + 1

2
Td(/C3) ↓ C2

=−1

2

(
12Cs(/C1)

)+ (5Cs(/C1)+ 2Cs(/Cs)
)+ 1

2

(
4Cs(/C1)

)
=Cs(/C1)+ 2Cs(/Cs). (19)

This result has already appeared in the left part of the subduction table ofTd (table 3).
The result represented by equation (18) also gives a useful result about the USCIs

for CRs concerning non-cyclic subgroups [40]. Thus we obtain USCIs for non-dominant
CRs forTd(/C3v):

C1: s24×(−1/2)
1 × s12

1 × s8×(1/2)1 = s41,
C2: s12×(−1/2)

2 × s62 × s4×(1/2)2 = s22,
Cs: s12×(−1/2)

2 × s21s52 × s4×(1/2)2 = s21s2,
C3: s8×(−1/2)

3 × s43 × s2×(1/2)1 s
2×(1/2)
3 = s1s3,

S4: s6×(−1/2)
4 × s34 × s1×(1/2)4 = s4.
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These USCIs have already appeared in the lower left part of the USCI table ofTd (ta-
ble 5).

6. Q-conjugacy and characteristic monomials

6.1. Markaracter tables, character tables, and Q-conjugacy character tables

Now, we are ready to discuss the relationship between markaracter tables and char-
acter tables [51,55]. Remember that chemical applications of the group theory, such as
quantum chemistry and spectroscopic analyses, are based on character tables, whereas
combinatorial eneumeration discussed here is based on markaracter tables.

Let us now compare the markaracter table ofTd and the corresoponding charac-
ter table (table 9). As found easily, they have the same numbers of rows and the same
numbers of columns. When we do, however, take the columns of these tables into con-
sideration, we shoud mention that the markaracter table is itemized with respect to con-
jugate cyclic subgroups, while the character table is itemized with respect to conujugacy
classes. Note also that the rows of the markaracter table are itemized with respect to CRs
(more precisely dominant coset representations), while the rows of the character table
are itemized with respect to irreducible representations. Thus, it is rather an accidental
case that they have the same numbers of rows and the same numbers of columns. We
call such a case asTd “a matured case” [56]. This means that a character table is identi-

Table 9
(a) markaracter table (̃M) and (b) (Q-conjugacy) character table ofTd .

M̃ C1 C2 Cs C3 S4

Td(/C1) 24 0 0 0 0
Td(/C2) 12 4 0 0 0
Td (/Cs) 12 0 2 0 0
Td(/C3) 8 0 0 2 0
Td(/S4) 6 2 0 0 2

(a)

C1 C2 Cs C3 S4
(D,Q) I 3C2 6σd 8C3 6S4

A1 1 1 1 1 1
A2 1 1 −1 1 −1
E 2 2 0 −1 0
T1 3 −1 −1 0 1
T2 3 −1 1 0 −1

(b)

Table 10
(a) markaracter table (̃M), (b) character table (D), and (c)Q-conjugacy character table (Q) of T.

M̃ C1 C2 C3

T(/C1) 12 0 0
T(/C2) 6 2 0
Td(/C3) 4 0 1

(a)

(D) I 3C2 4C3 4C2
3

A1 1 1 1 1
Ea 1 1 ω ω2

Eb 1 1 ω2 ω

T 3 −1 0 0

(b)

(Q) C1 C2 C3
I 3C2 {4C3,4C

2
3}

A1 1 1 1
E 2 2 −1
T 3 −1 0

(c)

Note:ω + ω2 = −1.
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cal with aQ-conjugacy character table, as clarified later by the discussion on unmatured
cases.

In the case ofT group, on the other hand, the markaracter table is different to the
character table (table 10). We call this case “an unmatured case” [56,57]. In place of
conjugacy classes based on conjugates operations, we useQ-conjugacy classes based on
conjugate cyclic subgroups. Although a proof is abbreviated, we can add theE1-row to
E2-row of the character table (table 10), where the results for the rightmost two columns
are equal to each other, which are now called “Q-conjugacy characters”. As a result,
we obtain theQ-conjugacy character table. It should be noted here that this treatment
is not a simple addition of a pair of conjugate complex characters, which is a standard
treatment of chemical group theory [44].

In general, markaracter tables andQ-conjugacy character tables are interconvert-
ible by appropriate transformation matrices, although a proof is abbreviated here. The
interconvertibility between them has been proved by means of the Möbius function [53].
It is well known that irreducible characters are orthnormal; i.e., any two of them are
orthogonal to each other and each irreducible character is normalized. In contrast, each
Q-conjugacy character is not always normalized while twoQ-conjugacy characters are
orthoganal [58]. The present treatment represents a markaracter as a linear combination
of Q-conjugacy characters with coefficients of integers [58], whereas Artin’s theorem
represents a markaracter (or a rational character) as a linear combination of dominant
markaracters with coefficients of rational numbers [59].

6.2. Characteristic monomial tables and the characteristic-monomial method

The discussion onQ-conjugacy character tables enables us to construct a charac-
teristic monomial (CM) table (e.g., table 11), which corresponds to a dominant USCI
table described above (e.g., table 8). Note that the power of each dummy variable for
the former table can be a minus integer, whereas the counterpart for the latter table is a
plus integer [53]. Obviously, the power of the variables1 in each dominant CM (e.g.,
table 11) is equal to the corresponding character collected in theQ-conjugacy character
table (e.g., table 9). This is parallel to the relashionship between markaracter tables and
dominant USCI tables (e.g., table 9 vs. table 8).

Table 11
Characteristic monomial table forTd .

↓C1 ↓C2 ↓Cs ↓C3 ↓S4

A1 s1 s1 s1 s1 s1

A2 s1 s1 s−1
1 s2 s1 s−1

1 s2

E s21 s21 s2 s−1
1 s3 s2

T1 s31 s−1
1 s22 s−1

1 s22 s3 s1s
−1
2 s4

T2 s31 s−1
1 s22 s1s2 s3 s−1

1 s4

Nj
1
24

1
8

1
4

1
3

1
4
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From the data of a characteristic monomial (CM) table, we can construct a cycle
index [52,60]:

CI
(
G; s′d

) =∑
j=1

Nj
∏
i

[
Z
(
(i ↓ Cj ; s′d

)]αi
. (20)

Although the general formula of the characteristic monomialZ((i ↓ Cj ; s′d) is not
shown for the sake of simplicity, the use of equation (20) is straightforward by means of a
CM table (e.g., table 11). Thereby, we can obtain a generating function for enumeration
of isomers with formulaWθ : ∑

θ

AθWθ = CI
(
G; s′d

)
(21)

where we use ligand-inventories represented by equation (6). This is a further formula-
tion equivalent to Pólya’s theorem.

Let us reexamine the enumeration of adamantane isomers (figure 4) by means of
the characteristic-monomial (CM) method. For example, the markaracter forTd(/C2v)

is reduced into dominant markaracterA1, E, andT2 as follows:

Td(/C2v) = A1 + E + T2,

Td(/C3v) = A1 + T2.

According to this reduction, we can calculate the corresponding SCIs from the data of
the characteristic monomial table ofTd (table 11). The CMs forTd(/C2v) are found in
table 11 as follows:

Td(/C2v) C1 C2 Cs C3 S4

A1 s1 s1 s1 s1 s1

E s21 s21 s2 s−1
1 s3 s2

T2 s31 s−1
1 s

2
2 s1s2 s3 s−1

1 s4

which are respectively multiplied by the CMs forTd(/C3v) taken also from table 11:

Td(/C3v) C1 C2 Cs C3 S4

A1 s1 s1 s1 s1 s1

T2 s31 s−1
1 s

2
2 s1s2 s3 s−1

1 s4

Nj 1/24 1/8 1/4 1/3 1/4

By introducing these SCIs into equation (20), we obtain a cycle index for this case:

CI= 1

24

(
s61
)(1)(

s41
)(2) + 1

8

(
s21s

2
2

)(1)(
s22
)(2) + 1

4

(
s21s

2
2

)(1)(
s21s2

)(2)
+ 1

3

(
s23
)(1)
(s1s3)

(2) + 1

4
(s2s4)

(1)(s4)
(2). (22)

The CI is identical with equation (15) obtained by the CI method of the USCI approach.
By introducing the ligand inventories shown in figure 4, we can obtain a generating func-
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Permutation Representation Linear Representation

Marks – Markaracters — Q-Conjugacy characters — Characters
USCI – Dominant USCIs — Characteristic Monomials︸ ︷︷ ︸

Common Discussion

Figure 7. Basis for common discussion.

tion, which is identical with the counterpart (equation (16)) derived by the CI method of
the USCI approach.

7. Conclusion

Chemical applications of the group theory have two major fields, as shown in In-
troduction. Chemical combinatorics is based on permutation representations, which are
characterized by means of “marks” as basic invariants, as shown in the left part of fig-
ure 7. On the other hand, applications to quantum chemistry etc. are linked to lin-
ear representations, which are charactereized by means of “characters” as basic invari-
ants, as shown in the right part of figure 7. In this paper, we have derived markaracters
from marks, while we deriveQ-conjugacy characters from characters. Thereby, we have
shown that the markaracters and theQ-conjugacy characters are interconvertible so as
to be discussed in a common basis.

In agreement of this interconvertibility, dominant USCIs derived from USCIs have
a common basis with characteristic monomials. Although the characteristic-monomial
method have less advantage than the USCI method as a tool of chemical combinatorics,
the common basis accompanied with the formulation of characteristic monomials are
useful to comprehend group-theoretical applications.
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